PEC. NO.:	PS-92801->	XXXXX-XXX R	EVISION: A
PRODUCT NA	AME: FAI	KRA CONN.	
PRODUCT NO	928	CHECKED:	APPROVED:
Lin,Lia	ang Ju	Lee,Kuang En	Lee,Kuang En
DATE:		DATE:	DATE:

Aces P/N: 92801 92802 92803 series TITLE: FAKRA CONN RELEASE DATE: 2018.11.06 REVISION: A ECN No: 1811112 PAGE: 2 OF 14 2 3 REQUIREMENTS......4 5 PERFORMANCE5 6. PRODUCT QUALIFICATION AND TEST SEQUENCE...... 8

Revision HistoryRev.ECN #Revision DescriptionPreparedDateO1804297NEW RELEASEChang, Yao Sheng2018.05.				Aces P/N: 92801 928	<mark>02 92803</mark> serie	S
Revision HistoryRev.ECN #Revision DescriptionPreparedDateO1804297NEW RELEASEChang, Yao Sheng2018.05.	TLE: FAK	KRA CONN				
Rev. ECN # Revision Description Prepared Date O 1804297 NEW RELEASE Chang, Yao Sheng 2018.05.	EASE DATE: 2	2018.11.06	REVISION: A	ECN No: 1811	112	PAGE: 3 OF 14
Rev. ECN # Revision Description Prepared Date O 1804297 NEW RELEASE Chang, Yao Sheng 2018.05.	Ravisio	n History				
O 1804297 NEW RELEASE Chang, Yao Sheng 2018.05.			R	evision Description	Prepared	d Date
A 1811112 REMOVE DUPLICATE TESTS Lin Liang Ju 2018.11.						
	Α	1811112	REMOVE [OUPLICATE TESTS		

TITLE: FAKRA CONN

2 SCOPE

This specification covers performance, tests and quality requirements for FAKRA CONN.

3 APPLICABLE DOCUMENTS

EIA-364: ELECTRONICS INDUSTRIES ASSOCIATION

SAE/USCAR-2 Rev.5 2007: PERFORMANCE SPECIFICATION FOR AUTOMOTIVE ELECTRICAL CONNECTOR SYSTEMS

SAE/USCAR-17 Rev. 4 2013 : PERFORMANCE SPECIFICATION FOR AUTOMOTIVE RF CONNECTOR SYSTEMS

SAE/USCAR-18 2002: FAKRA SMB RF CONNECTOR SUPPLEMENT

ISO-20860-1: INTERNATIONAL ORGANIZATION FOR STANDARDIZATION.

4 REQUIREMENTS

- 4.1 Design and Construction
 - 4.1.1 Product shall be of design, construction and physical dimensions specified on applicable product drawing.
 - 4.1.2 All materials conform to R.o.H.S. and the standard depends on TQ-WI-140101.
- 4.2 Materials and Finish
 - 4.2.1 Contact: High performance copper alloy

Finish: Refer to the drawing.

- 4.2.2 Housing: Thermoplastic or Thermoplastic High Temp.,
- 4.3 Ratings
 - 4.3.1 Voltage: Less than 36 Volts AC (per pin)
 - 4.3.2 Current: 1 Amperes (per pin)
 - 4.3.3 Operating Temperature : -40°C to +105°C
 - 4.3.4 Impedance: 50 ohms
 - 4.3.5 Frequency Range: 0 to 4000 MHz (cable dependent)

Aces P/N:	92801	92802	92803	series
7000 I / IN.				001100

TITLE: FAKRA CONN

RELEASE DATE: 2018.11.06 REVISION: A ECN No: 1811112 PAGE: **5** OF **14**

5 Performance

5.1. Test Requirements and Procedures Summary

Item	Requirement	Standard
	Product shall meet requirements of	
Examination of Product	applicable product drawing and	per applicable quality inspection
	specification.	plan.
Item	Requirement	Standard
Dry Circuit Resistance	40 m Ω Max. for center conductor. 40 m Ω Max. for center outer/ground conductor.	SAE/USCAR-17, 4.3.1 SAE/USCAR-2 , 5.3.1.4
Isolation Resistance	100 M Ω Min. for center to outer contact.	SAE/USCAR-17, 4.4.1 500 V DC between center conductor and shield for 1 minute. SAE/USCAR-2, 5.5.1.4
Dielectric Strength	No discharge, flashover or breakdown. Current leakage: 1 mA max.	SAE/USCAR-17, 4.3.2 Test between center conductor and shielding. 800 V AC Min. at sea level for 1 minute.
Voltage Standing Wave Ratio (VSWR)	≤ 1.40 for 0 to 2 GHz ≤ 1.52 for >2 to 4 GHz	SAE/USCAR-17 4.4.2
Shielding effectiveness (dose not apply to printed circuit board connectors)	45 dB Min. for 0 t0 3 GHz	SAE/USCAR-17 4, 4.3
RF Insertion Loss (In-line Connectors only)	0.3 dB Max. from 0 to 3 GHz	SAE/USCAR-17 4, 4.2 ISO-20860-1 6

TITLE: FAKRA CONN

RELEASE DATE: 2018.11.06 REVISION: A ECN No: 1811112 PAGE: **6** OF **14**

	MECHANICAL									
Item	Requirement	Standard								
Vibration/ Mechanical Shock	Continuity Monitoring: 1 µs Max. Appearance: No deformation, cracks, or breaking.	SAE/USCAR-2 5.4.6 Vibrated for 8 hours in each of the three mutually perpendicular axes (X,Y,Z) Figure 5.4.6.3-E								
Shielding BodyPush-out Force	120 N Min.	Apply axial pull out force at the speed rate of 25.4 ± 3 mm/minute. On the terminal assembled in the housing.								
Connector to Connector mating/unmating force Without Lock Enabled	75N Max.	SAE/USCAR-2 5.4.2								
Center Contact Retention Force	2N Min	SAE/USCAR-2 5.4.1								
Connector Disengage with Lock Enabled	80N Min	SAE/USCAR-2 5.43								
Durability	10 cycles.	None (Manually)								
Polarization Feature Effectiveness	80 N Min.	SAE/USCAR-17, 4.2.3 (Rotated 90 degrees from normal mating position)								

TITLE: FAKRA CONN

RELEASE DATE: 2018.11.06 REVISION: A ECN No: 1811112 PAGE: **7** OF **14**

ENVIRONMENTAL								
Item	Requirement	Standard						
Temperature Humidity Cycling	See Product Qualification and Test Sequence Group 5,17	SAE/USCAR-2 Rev 5.6.2 -40°C to +85°C for RG-174 cable. -40°C to +105°C for RG-316 cable. For 40 cycles.						
High Temperature Exposure	See Product Qualification and Test Sequence Group 4,18	SAE/USCAR-2 Rev 5.6.3 85°C for RG-174 cable. 105°C for RG-316 cable. For 1008 Hours.						
Thermal Shock	See Product Qualification and Test Sequence Group 3,17	SAE/USCAR-2 Rev 5.6.1 -40°C to +85°C for RG-174 cable. -40°C to +105°C for RG-316 cable. For 100cycles.						
Salt Spray	Examination of Product	Subject mated/unmated connectors to 5% salt-solution concentration, 35°C for 24 hours. (EIA-364-26)						
Solder ability	Solder able area shall have minimum of 95% solder coverage.	And then into solder bath, Temperature at 245 ±5°C, for 4-5 sec. (EIA-364-52)						
Hand Soldering Temperature Resistance	Appearance: No damage	T≧350°C, 3sec at least.						

Note. Shall meet visual requirements, show no physical damage, and meet requirements of additional test as specified in the Product Qualification and Requalification Test Sequence shown.

		Aces P/N: 9	2801 92802 92803 s	series
TITLE: FAKRA CONN				
RELEASE DATE: 2018.11.06	REVISION: A		ECN No: 1811112	PAGE: 8 OF 14

6. PRODUCT QUALIFICATION AND TEST SEQUENCE

	Test Group											
Test or Examination	1	2	3	4	5	6	7	8	9	10		
	Test Sequence											
Examination of Product	1	1 \ 13	1 \ 13	1 \ 13	1 \ 13	1 . 7		1	1	1		
Dry Circuit Resistance		2 . 6 . 10	2 . 6 . 10	2 \ 6 \ 10	2 . 6 . 10							
Isolation Resistance		3 \ 7 \ 11	3 \ 7 \ 11	3 \ 7 \ 11	3 \ 7 \ 11							
Dielectric Strength		4 \ 8 \ 12	4 \ 8 \ 12	4 \ 8 \ 12	4 \ 8 \ 12							
Voltage Standing Wave Ratio (VSWR)						2 \ 5						
Shielding effectiveness (dose not apply to printed circuit board connectors)												
RF Insertion Loss (In-line Connectors only)						3、6						
Shielding BodyPush-out Force								2				
Connector to Connector mating/unmating force Without Lock Enabled	2											
Center Contact Retention Force									2			
Connector Disengage with Lock Enabled	3											
Durability		5	5	5	5	4						
Polarization Feature Effectiveness										2		
Temperature Humidity Cycling					9							
High Temperature Exposure				9								
Thermal Shock			9									
Vibration/ Mechanical		9										
Salt Spray												
Solder ability												
Hand Soldering												

TITLE: FAKRA CONN

RELEASE DATE: 2018.11.06 REVISION: A ECN No: 1811112 PAGE: 9 OF 14

Temperature Resistance									
Sample Size	5	5	5	5	5	5	5	5	5

							-1.0				
Took or		T	1	T	Г	16	st Group	T			
Test or Examination	11	12	13	14	15	16	17	18	19		
		Test Sequence									
Examination of Product	1、3	1、3	1、3	1	1、7	1 . 7	1 . 7	1 . 7	1、7		
Dry Circuit Resistance											
Isolation Resistance											
Dielectric Strength											
Voltage Standing Wave Ratio (VSWR)					4	4	4	4	4		
Shielding effectiveness (dose not apply to printed circuit board connectors)				2、4							
RF Insertion Loss (In-line Connectors only)					5	5	5	5	5		
Shielding BodyPush-out Force											
Connector to Connector mating/unmating force Without Lock Enabled											
Center Contact Retention Force											
Connector Disengage with Lock Enabled											
Durability				3	2	2	2	2	2		
Polarization Feature Effectiveness											
Temperature Humidity Cycling									3		
High Temperature Exposure								3			
Thermal Shock							3				
Vibration/ Mechanical					3	3					
Salt Spray	2	_		_							
Solder ability		2									
Hand Soldering Temperature Resistance			2								

		Aces P/N: 92801 92802 92803 series									
TITLE: FAKRA CONN											
RELEASE DATE: 2018.11.06		VISION	: A			ECN N	o: 1811112		ı	PAGE: 10 OF 14	
Sample Size	5	5	5	5	5	5	5	5	5		
							l				