

Features

- AEC-Q100 Grade 2 temperature range (-40°C to 105°C). Grade 3 and Grade 4 also available
- Any frequency between 220.000001 MHz and 725 MHz, accurate to 6 decimal places. For HCSL output signaling, maximum frequency is 500 MHz - contact SiTime for higher frequency options. For frequency between 1 and 220 MHz, see SiT9386
- LVPECL, LVDS and HCSL output signaling
- Frequency stability as low as ±10 ppm contact SiTime
- 0.23 ps RMS (typ) phase jitter (random, 12 kHz to 20 MHz)
- Industry-standard packages: 3.2 x 2.5, 7.0 x 5.0 mm. Contact SiTime for 5.0 x 3.2 mm package

Applications

- 100 Gbps Ethernet, SONET, SATA, SAS, Fibre Channel
- Telecom, networking, instrumentation, storage, servers

SEARCH

GREEN

LIFETIME

Electrical Characteristics

Table 1. Electrical Characteristics - Common to LVPECL, LVDS and HCSL

All Min and Max limits in the Electrical Characteristics tables are specified over temperature and rated operating voltage with standard output termination show in the termination diagrams. Typical values are at 25°C and nominal supply voltage.

Parameter	Symbol	Min.	Тур.	Max.	Unit	Condition
			Free	uency Rang	je	
Output Frequency Range	f	220.000001	-	725	MHz	Accurate to 6 decimal places
			Frequ	uency Stabil	ity	
Frequency Stability		-10	-	+10	ppm	Inclusive of initial tolerance, operating temperature, rated power supply voltage and load variations. Contact SiTime for ± 10 ppm
		-20	-	+20	ppm	Inclusive of initial tolerance, operating temperature, rated
		-25	-	+25	ppm	power supply voltage and load variations
		-50	-	+50	ppm	
First Year Aging	F_aging1	_	±1	-	ppm	At 25°C
			Temp	erature Ran	ge	
		-20	-	+70	°C	AEC-Q100 Grade 4
Operating Temperature Range	T_use	-40	-	+85	°C	AEC-Q100 Grade 3
		-40	-	+105	°C	AEC-Q100 Grade 2
			Su	pply Voltage)	
Supply Voltage	Vdd	2.97	3.30	3.63	V	
		2.70	3.00	3.30	V	
		2.52	2.80	3.08	V	
		2.25	2.50	2.75	V	
			Input (Characteris	tics	
Input Voltage High	VIH	70%	-	-	Vdd	Pin 1, OE
Input Voltage Low	VIL	-	-	30%	Vdd	Pin 1, OE
Input Pull-up Impedance	Z_in	-	100	-	kΩ	Pin 1, OE logic high or logic low
			Output	Characteris	stics	
Duty Cycle	DC	45		55	%	
			Startup	and OE Tir	ning	
Startup Time	T_start	-	-	3.0	ms	Measured from the time Vdd reaches its rated minimum value
OE Enable/Disable Time	T_oe	_	-	3.8	μs	F = 322.265625 MHz. Measured from the time OE pin reaches rated VIH and VIL to the time clock pins reach 90% of swing and high-Z. See Figure 6 and Figure 7

Rev 1.0 March 15, 2019

Table 2. Electrical Characteristics – LVPECL Specific

Parameter	Symbol	Min.	Тур.	Max.	Unit	Condition				
	Current Consumption									
Current Consumption	ldd	-	ı	94	mA	Excluding Load Termination Current, Vdd = 3.3V or 2.5V				
OE Disable Supply Current	I_OE	-	-	63	mA	OE = Low				
Output Disable Leakage Current	I_leak	-	0.15	-	μА	OE = Low				
Maximum Output Current	I_driver	-	-	33	mA	Maximum average current drawn from OUT+ or OUT-				
			Outpu	t Characteri	stics					
Output High Voltage	VOH	Vdd-1.15	ı	Vdd-0.7	V	See Figure 2				
Output Low Voltage	VOL	Vdd-2.0	-	Vdd-1.5	V	See Figure 2				
Output Differential Voltage Swing	V_Swing	1.2	1.6	2.0	V	See Figure 3				
Rise/Fall Time	Tr, Tf	-	225	330	ps	20% to 80%, see Figure 3				
			Jitter - 7.	0 x 5.0 mm _l	oackage					
RMS Period Jitter ^[1]	T_jitt	_	1.0	1.6	ps	f = 100, 156.25 or 212.5 MHz, Vdd = 3.3V or 2.5V				
RMS Phase Jitter (random)	T_phj	-	0.220	0.270	ps	f = 322.265625 MHz, Integration bandwidth = 12 kHz to 20 MHz, all Vdd levels, includes spurs. Temperature ranges -20 to 70°C and -40 to 85°C				
		-	0.220	0.300	ps	f = 322.265625 MHz, Integration bandwidth = 12 kHz to 20 MHz, all Vdd levels, includes spurs. Temperature range -40 to 105°C				
		-	0.1	-	ps	f = 156.25 or 322.265625 MHz, IEEE802.3-2005 10GbE jitter mask integration bandwidth = 1.875 MHz to 20 MHz, includes spurs, all Vdd levels				
			Jitter - 3.	2 x 2.5 mm _l	oackage					
RMS Period Jitter ^[1]	T_jitt	-	1.0	1.6	ps	f = 100, 156.25 or 212.5 MHz, Vdd = 3.3V or 2.5V				
RMS Phase Jitter (random)	T_phj	-	0.225	0.282	ps	f = 322.265625 MHz, Integration bandwidth = 12 kHz to 20 MHz, all Vdd levels, includes spurs. Temperature ranges -20 to 70°C and -40 to 85°C				
		-	0.225	0.315	ps	f = 322.265625 MHz, Integration bandwidth = 12 kHz to 20 MHz, all Vdd levels, includes spurs. Temperature range -40 to 105°C				
		-	0.1	-	ps	$f=322.265625\ \text{MHz}$, IEEE802.3-2005 10GbE jitter mask integration bandwidth = 1.875 MHz to 20 MHz, Includes spurs, all Vdd levels				

Notes:

1. Measured according to JESD65B

Rev 1.0 Page 2 of 14

Table 3. Electrical Characteristics - LVDS Specific

Parameter	Symbol	Min.	Тур.	Max.	Unit	Condition			
			Currer	t Consump	tion				
Current Consumption	ldd	-	_	85	mA	Excluding Load Termination Current, Vdd = 3.3V or 2.5V			
OE Disable Supply Current	I_OE	-	-	63	mA	OE = Low			
Output Disable Leakage Current	l_leak	_	0.15	_	μΑ	OE = Low			
Output Characteristics									
Differential Output Voltage	VOD	250	-	530	mV	See Figure 4			
VOD Magnitude Change	ΔVOD	ı	-	50	mV	See Figure 4			
Offset Voltage	VOS	1.125	-	1.375	V	See Figure 4			
VOS Magnitude Change	ΔVOS	-	-	50	mV	See Figure 4			
Rise/Fall Time	Tr, Tf	I	370	505	ps	Measured with 2 pF capacitive loading to GND, 20% to 80%, see Figure 5			
			Jitter - 7.0	x 5.0 mm p	ackage				
RMS Period Jitter ^[2]	T_jitt	-	0.92	1.6	ps	f = 100, 156.25 or 212.5 MHz, Vdd = 3.3V or 2.5V			
RMS Phase Jitter (random)	T_phj	-	0.215	0.265	ps	f = 322.265625 MHz, Integration bandwidth = 12 kHz to 20 MHz, all Vdd levels, includes spurs. Temperature ranges -20 to 70°C and -40 to 85°C			
		-	0.215	0.280	ps	f = 322.265625 MHz, Integration bandwidth = 12 kHz to 20 MHz, all Vdd levels, includes spurs. Temperature range -40 to 105°C			
		-	0.1	-	ps	f = 322.265625 MHz, IEEE802.3-2005 10GbE jitter mask integration bandwidth = 1.875 MHz to 20 MHz, Includes spurs, all Vdd levels			
			Jitter - 3.2	x 2.5 mm p	ackage				
RMS Period Jitter ^[2]	T_jitt	_	0.92	1.6	ps	f = 100, 156.25 or 212.5 MHz, Vdd = 3.3V or 2.5V			
RMS Phase Jitter (random)	T_phj	-	0.235	0.282	ps	f = 322.265625 MHz, Integration bandwidth = 12 kHz to 20 MHz, all Vdd levels, includes spurs. Temperature ranges -20 to 70°C and -40 to 85°C.			
		-	0.235	0.310	ps	f = 322.265625 MHz, Integration bandwidth = 12 kHz to 20 MHz, all Vdd levels, includes spurs. Temperature range -40 to 105°C			
		-	0.1	-	ps	$f=322.265625\ \text{MHz}$, IEEE802.3-2005 10GbE jitter mask integration bandwidth = 1.875 MHz to 20 MHz, Includes spurs, all Vdd levels			

Notes:

2. Measured according to JESD65B

Rev 1.0 Page 2 of 14

Table 4. Electrical Characteristics – HCSL Specific

Parameter	Symbol	Min.	Тур.	Max.	Unit	Condition
			Currer	nt Consump	tion	
Current Consumption	ldd	-	-	97	mA	Excluding Load Termination Current, Vdd = 3.3V or 2.5V
OE Disable Supply Current	I_OE	-	-	63	mA	OE = Low
Output Disable Leakage Current	I_leak	-	0.15	-	μΑ	OE = Low
Maximum Output Current	I_driver	-	-	35	mA	Maximum average current drawn from OUT+ or OUT-
			Output	Characteris	stics	
Output High Voltage	VOH	0.60	-	0.90	V	See Figure 2
Output Low Voltage	VOL	-0.05	-	0.08	V	See Figure 2
Output Differential Voltage Swing	V_Swing	1.2	1.4	1.9	V	See Figure 3
Rise/Fall Time	Tr, Tf	ı	360	505	ps	Measured with 2 pF capacitive loading to GND, 20% to 80%, see Figure 3
			Jitter - 7.0	x 5.0 mm p	ackage	
RMS Period Jitter ^[3]	T_jitt	-	1.0	1.6	ps	f = 100, 156.25 or 212.5 MHz, Vdd = 3.3V or 2.5V
RMS Phase Jitter (random)	T_phj	-	0.215	0.265	ps	f = 322.265625 MHz, Integration bandwidth = 12 kHz to 20 MHz, all Vdd levels, includes spurs. Temperature ranges -20 to 70°C and -40-85°C
		-	0.215	0.282	ps	f = 322.265625 MHz, Integration bandwidth = 12 kHz to 20 MHz, all Vdd levels, includes spurs. Temperature range -40 to 105°C
		-	0.1	_	ps	f = 322.265625 MHz, IEEE802.3-2005 10GbE jitter mask integration bandwidth = 1.875 MHz to 20 MHz, Includes spurs, all Vdd levels
			Jitter - 3.2	2 x 2.5 mm p	ackage	
RMS Period Jitter ^[3]	T_jitt	_	1.0	1.6	ps	f = 100, 156.25 or 212.5 MHz, Vdd = 3.3V or 2.5V
RMS Phase Jitter (random)	T_phj	ı	0.235	0.282	ps	f = 322.265625 MHz, Integration bandwidth = 12 kHz to 20 MHz, all Vdd levels, includes spurs. Temperature ranges -20 to 70°C and -40 to 85°C.
		I	0.235	0.305	ps	f = 322.265625 MHz, Integration bandwidth = 12 kHz to 20 MHz, all Vdd levels, includes spurs. Temperature range -40 to 105°C
		-	0.1	_	ps	f = 322.265625 MHz, IEEE802.3-2005 10GbE jitter mask integration bandwidth = 1.875 MHz to 20 MHz, Includes spurs, all Vdd levels

Notes:

3. Measured according to JESD65

Rev 1.0 Page 3 of 14

Table 5. Pin Description

Pin	Мар	Functionality					
	05/10	Output Enable (OE)	H ^[4] : specified frequency output L: output is high impedance				
	1 OE/NC Non Connect (NC)	H or L or Open: No effect on output frequency or other device functions					
2	NC	NA	No Connect; Leave it floating or connect to GND for better heat dissipation				
3	GND	Power	Vdd Power Supply Ground				
4	OUT+	Output	Oscillator output				
5	OUT-	Output	Complementary oscillator output				
6	Vdd	Power	Power supply voltage ^[5]				

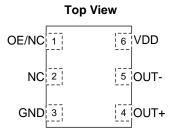


Figure 1. Pin Assignments

Notes:

- 4. In OE mode, a pull-up resistor of 10 $k\Omega$ or less is recommended if pin 1 is not externally driven.
- 5. A capacitor of value 0.1 μ F or higher between Vdd and GND is required. An additional 10 μ F capacitor between Vdd and GND is required for the best phase jitter performance

Table 6. Absolute Maximum Ratings

Attempted operation outside the absolute maximum ratings may cause permanent damage to the part.

Actual performance of the IC is only guaranteed within the operational specifications, not at absolute maximum ratings.

Parameter	Min.	Max.	Unit
Vdd	-0.5	4.0	V
VIH		Vdd + 0.3V	V
VIL	-0.3		V
Storage Temperature	-65	150	°C
Maximum Junction Temperature		130	°C
Soldering Temperature (follow standard Pb-free soldering guidelines)		260	°C

Table 7. Thermal Considerations^[6]

Package	θ _{JA} , 4 Layer Board (°C/W)	θ _{JC} , Bottom (°C/W)
3225, 6-pin	80	30
7050, 6-pin	52	19

Notes:

6. Refer to JESD51 for θ_{JA} and θ_{JC} definitions, and reference layout used to determine the θ_{JA} and θ_{JC} values in the above table.

Table 8. Maximum Operating Junction Temperature^[7]

Max Operating Temperature (ambient)	Maximum Operating Junction Temperature		
70°C	95°C		
85°C	110°C		
105°C	130°C		

Notes:

7. Datasheet specifications are not guaranteed if junction temperature exceeds the maximum operating junction temperature.

Table 9. Environmental Compliance

Parameter	Test Conditions	Value	Unit	
Mechanical Shock Resistance	MIL-STD-883F, Method 2002	10,000	g	
Mechanical Vibration Resistance	MIL-STD-883F, Method 2007	70	g	
Soldering Temperature (follow standard Pb free soldering guidelines)	MIL-STD-883F, Method 2003	260	°C	
Moisture Sensitivity Level	MSL1 @ 260°C			
Electrostatic Discharge (HBM)	HBM, JESD22-A114	2,000	V	
Charge-Device Model ESD Protection	JESD220C101	750	V	
Latch-up Tolerance	JESD78 Compliant			

Rev 1.0 Page 4 of 14

Waveform Diagrams

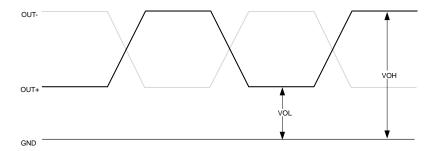


Figure 2. LVPECL/HCSL Voltage Levels per Differential Pin (OUT+/OUT-)

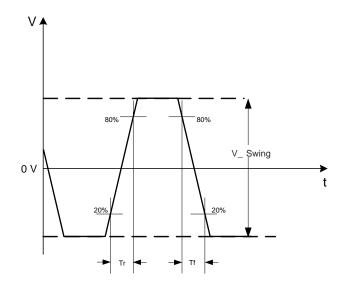


Figure 3. LVPECL/HCSL Voltage Levels across Differential Pair

Rev 1.0 Page 5 of 14

Waveform Diagrams (continued)

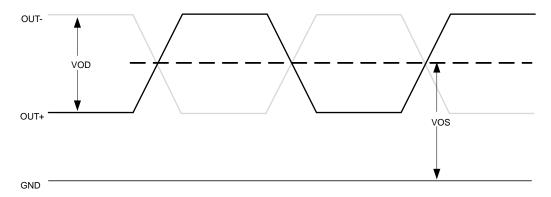


Figure 4. LVDS Voltage Levels per Differential Pin (OUT+/OUT-)

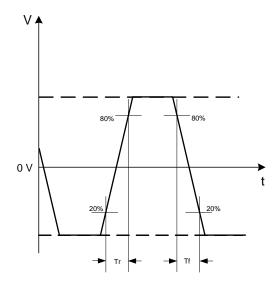


Figure 5. LVDS Differential Waveform

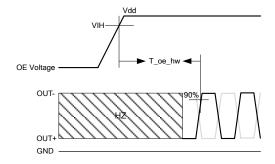


Figure 6. Hardware OE Enable Timing

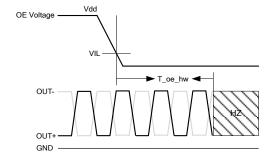


Figure 7. Hardware OE Disable Timing

Rev 1.0 Page 6 of 14

Termination Diagrams

LVPECL:

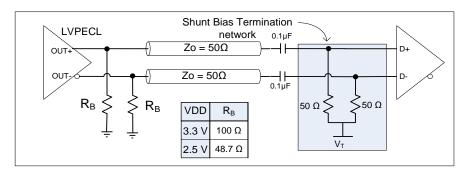


Figure 8. LVPECL with AC-coupled termination

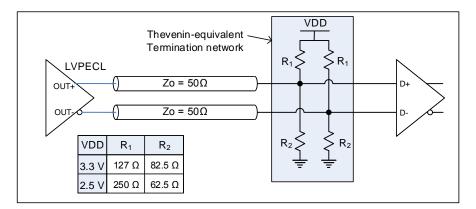


Figure 9. LVPECL DC-coupled load termination with Thevenin equivalent network

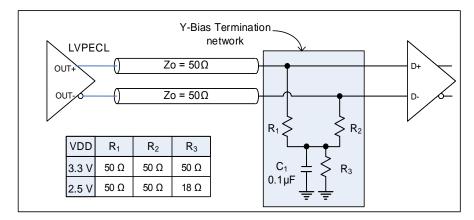


Figure 10. LVPECL with Y-Bias termination

Rev 1.0 Page 7 of 14

Termination Diagrams (continued)

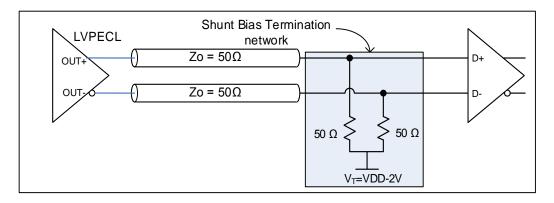


Figure 11. LVPECL with DC-coupled parallel shunt load termination

Rev 1.0 Page 8 of 14

Termination Diagrams (continued)

LVDS:

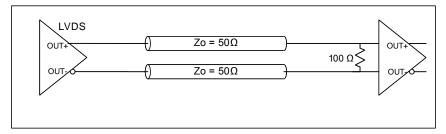


Figure 12. LVDS single DC termination at the load

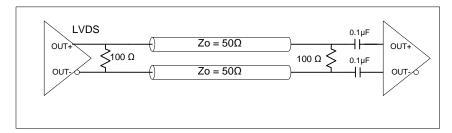


Figure 13. LVDS double AC termination with capacitor close to the load

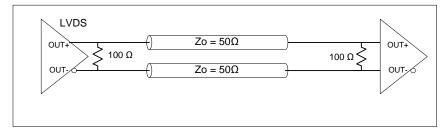


Figure 14. LVDS double DC termination

Rev 1.0 Page 9 of 14

Termination Diagrams (continued)

HCSL:

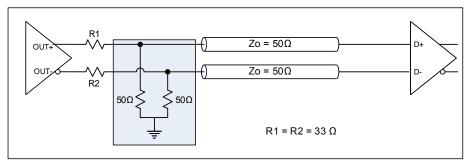
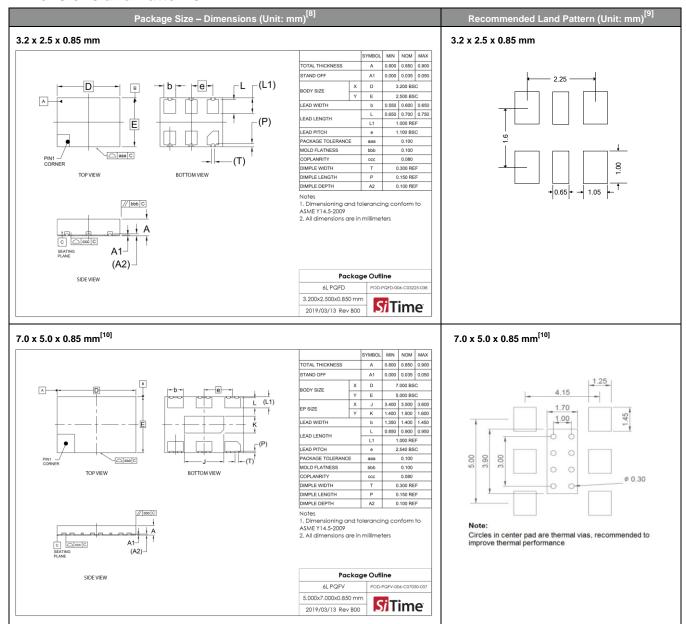
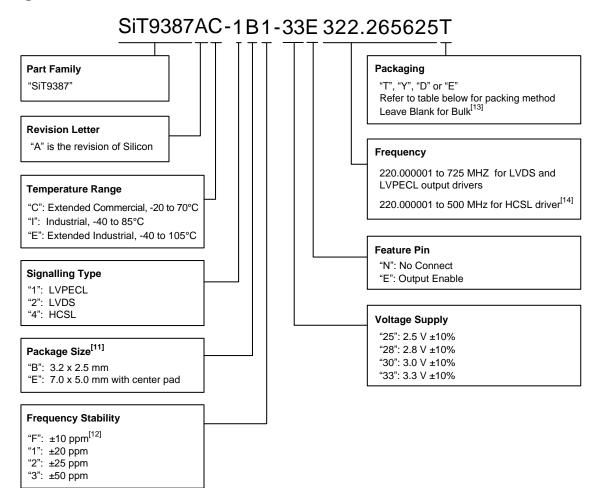



Figure 15. HCSL interface termination

Rev 1.0 Page 10 of 14

Dimensions and Patterns


Notes:

- 8. Top Marking: Y denotes manufacturing origin and XXXX denotes manufacturing lot number. The value of "Y" will depend on the assembly location of the device
- 9. A capacitor of value 0.1 μF or higher between Vdd and GND is required. An additional 10 μF capacitor between Vdd and GND is required for the best phase jitter performance
- 10. The center pad has no electrical function. Soldering down the center pad to the GND is recommended for best thermal dissipation, but is optional.

Rev 1.0 Page 11 of 14

Ordering Information

Notes:

- 11. Contact SiTime for 5.0 x 3.2 mm package.
- 12. Contact SiTime for ±10 ppm option.
- 13. Bulk is available for sampling only.
- 14. Contact SiTime for higher frequency HCSL options.

Table 10. Ordering Codes for Supported Tape & Reel Packing Method

Device Size (mm x mm)	8 mm T&R (3ku)	8 mm T&R (1ku)	12 mm T&R (3ku)	12 mm T&R (1ku)	16 mm T&R (3ku)	16 mm T&R (1ku)
7.0 x 5.0	_	_	_	_	Т	Υ
3.2 x 2.5	D	E			_	_

Rev 1.0 Page 12 of 14