

Features

- AEC-Q100 with extended temperature range (-55°C to 125°C)
- Frequencies between 1 MHz and 110 MHz accurate to 6 decimal places
- Supply voltage of 1.8V or 2.25V to 3.63V
- Excellent total frequency stability as low as ±20 ppm
- Industry best G-sensitivity of 0.1 PPB/G
- Low power consumption of 3.8 mA typical at 1.8V
- LVCMOS/LVTTL compatible output
- 5-pin SOT23-5 package: 2.9 x 2.8 mm x mm
- RoHS and REACH compliant, Pb-free, Halogen-free and Antimony-free

Applications

- Automotive, extreme temperature and other high-rel electronics
- Infotainment systems, collision detection devices, and invehicle networking
- Powertrain control

Electrical Characteristics

All Min and Max limits are specified over temperature and rated operating voltage with 15 pF output load unless otherwise stated. Typical values are at 25°C and nominal supply voltage.

Table 1. Electrical Characteristics

Parameters	Symbol	Min.	Тур.	Max.	Unit	Condition
			ı	Frequency I	Range	
Output Frequency Range	f	1	_	110	MHz	Refer to Table 13 and Table 14 for a list supported frequencies
	•		Freque	ncy Stabili	ty and Aging	g
Frequency Stability	F_stab	-20	_	+20	ppm	Inclusive of Initial tolerance at 25°C, 1st year aging at 25°C, and
		-25	-	+25	ppm	variations over operating temperature, rated power supply
		-30	-	+30	ppm	voltage and load (15 pF ±10%).
		-50	_	+50	ppm	
			Operat	ing Temper		е
Operating Temperature	T_use	-40	-	+85	°C	Industrial, AEC-Q100 Grade 3
Range (ambient)		-40	-	+105	°C	Extended Industrial, AEC-Q100 Grade2
		-40	-	+125	°C	Automotive, AEC-Q100 Grade 1
		-55	_	+125	°C	Extended Temperature, AEC-Q100
	•	5	Supply Volta	ge and Cur	rent Consu	mption
Supply Voltage	Vdd	1.62	1.8	1.98	V	All voltages between 2.25V and 3.63V including 2.5V, 2.8V, 3.0V
		2.25	-	3.63	V	and 3.3V are supported.
Current Consumption	ldd	-	4.0	4.8	mA	No load condition, f = 20 MHz, Vdd = 2.25V to 3.63V
		_	3.8	4.5	mA	No load condition, f = 20 MHz, Vdd = 1.8V
			LVCMO	S Output Cl	naracteristic	CS
Duty Cycle	DC	45	_	55	%	All Vdds
Rise/Fall Time	Tr, Tf	-	1.5	3	ns	Vdd = 2.25V - 3.63V, 20% - 80%
		_	1.3	2.5	ns	Vdd = 1.8V, 20% - 80%
Output High Voltage	VOH	90%	-	-	Vdd	IOH = -4 mA (Vdd = 3.0V or 3.3V)
						IOH = -3 mA (Vdd = 2.8V and Vdd = 2.5V) IOH = -2 mA (Vdd = 1.8V)
Output Low Voltage	VOL	_	-	10%	Vdd	IOL = 4 mA (Vdd = 3.0V or 3.3V)
						IOL = 3 mA (Vdd = 2.8V and Vdd = 2.5V)
						IOL = 2 mA (Vdd = 1.8V)
	1			put Charact		T
Input High Voltage	VIH	70%	_	-	Vdd	Pin 1, OE
Input Low Voltage	VIL	_	_	30%	Vdd	Pin 1, OE
Input Pull-up Impedence	Z_in	-	100	_	kΩ	Pin 1, OE logic high or logic low
			Startu	ıp and Resi	ıme Timing	
Startup Time	T_start	-	-	10	ms	Measured from the time Vdd reaches its rated minimum value
Enable/Disable Time	T_oe	-	_	130	ns	f = 110 MHz. For other frequencies, T_oe = 100 ns + 3 * cycles
				Jitter	•	
RMS Period Jitter	T_jitt	-	1.6	2.5	ps	f = 75 MHz, 2.25V to 3.63V
		_	1.9	3.0	ps	f = 75 MHz, 1.8V
RMS Phase Jitter (random)	T_phj	-	0.5	-	ps	f = 75 MHz, Integration bandwidth = 900 kHz to 7.5 MHz
		-	1.3	-	ps	f = 75 MHz, Integration bandwidth = 12 kHz to 20 MHz
			1	1		<u> </u>

Rev 1.6 December 14, 2016

Table 2. Pin Description

Pin	Symbol	Functionality			
1	GND	Power	Electrical ground		
2	NC	No Connect	No connect		
3	OE/NC	Output Enable	H ^[1] : specified frequency output L: output is high impedance. Only output driver is disabled.		
3	OL/NC	No Connect	Any voltage between 0 and Vdd or Open ^[1] : Specified frequency output. Pin 3 has no function.		
4	VDD	Power	Power supply voltage ^[2]		
5	OUT	Output	Oscillator output		

Top View

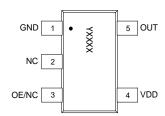


Figure 1. Pin Assignments

Notes:

- 1. In OE or ST mode, a pull-up resistor of 10 $k\Omega$ or less is recommended if pin 3 is not externally driven. If pin 3 needs to be left floating, use the NC option.
- 2. A capacitor of value 0.1 μF or higher between Vdd and GND is required.

Table 3. Absolute Maximum Limits

Attempted operation outside the absolute maximum ratings may cause permanent damage to the part. Actual performance of the IC is only guaranteed within the operational specifications, not at absolute maximum ratings.

Parameter	Min.	Max.	Unit
Storage Temperature	-65	150	°C
Vdd	-0.5	4	V
Electrostatic Discharge	-	2000	V
Soldering Temperature (follow standard Pb free soldering guidelines)	_	260	°C
Junction Temperature ^[3]	-	150	°C

Note:

3. Exceeding this temperature for extended period of time may damage the device.

Table 4. Thermal Consideration^[4]

Package	θJA, 4 Layer Board (°C/W)	θJC, Bottom (°C/W)
SOT23-5	421	175

Note:

4. Refer to JESD51 for θ JA and θ JC definitions, and reference layout used to determine the θ JA and θ JC values in the above table.

Table 5. Maximum Operating Junction Temperature^[5]

Max Operating Temperature (ambient)	Maximum Operating JunctionTemperature
85°C	95°C
105°C	115°C
125°C	135°C

Note

5. Datasheet specifications are not guaranteed if junction temperature exceeds the maximum operating junction temperature.

Table 6. Environmental Compliance

Parameter	Condition/Test Method
Mechanical Shock	MIL-STD-883F, Method2002
Mechanical Vibration	MIL-STD-883F, Method2007
Temperature Cycle	JESD22, Method A104
Solderability	MIL-STD-883F, Method 2003
Moisture Sensitivity Level	MSL1 @ 260°C

Rev. 1.6 Page 2 of 15

Test Circuit and Waveform^[6]

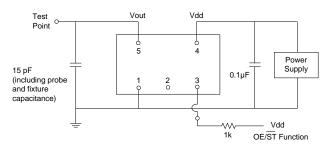


Figure 2. Test Circuit

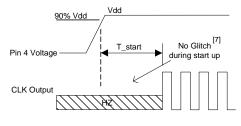
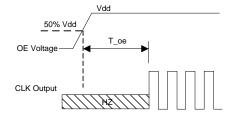

tr — tf 80% Vdd 50% 20% Vdd High Pulse (TH) Period Period

Figure 3. Waveform

Note:


6. Duty Cycle is computed as Duty Cycle = TH/Period.

Timing Diagrams

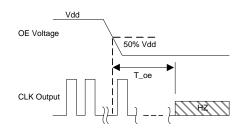

T_start: Time to start from power-off

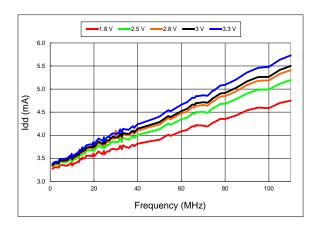
Figure 4. Startup Timing (OE Mode)

T_oe: Time to re-enable the clock output

Figure 5. OE Enable Timing (OE Mode Only)

T_oe: Time to put the output in High Z mode

Figure 6. OE Disable Timing (OE Mode Only)


Note:

7. SiT2024 has "no runt" pulses and "no glitch" output during startup or resume.

Rev. 1.6 Page 3 of 15

Performance Plots^[8]

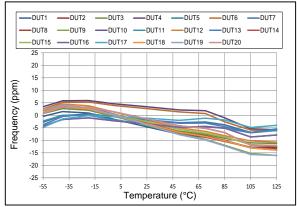
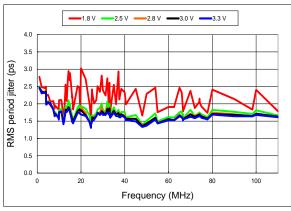



Figure 7. Idd vs Frequency

Figure 8. Frequency vs Temperature

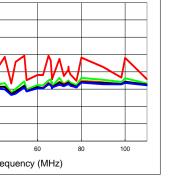


Figure 9. RMS Period Jitter vs Frequency

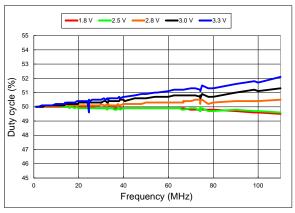
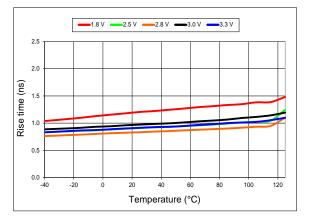



Figure 10. Duty Cycle vs Frequency

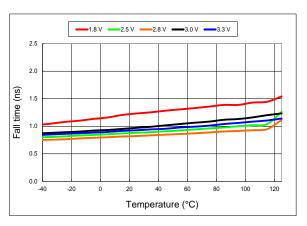
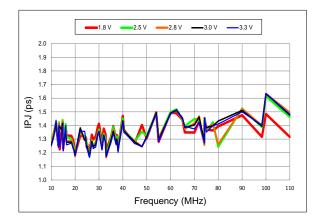



Figure 12. 20%-80% Fall Time vs Temperature

Rev. 1.6 Page 4 of 15

Performance Plots^[8]

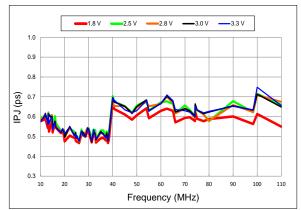


Figure 13. RMS Integrated Phase Jitter Random (12 kHz to 20 MHz) vs Frequency^[9]

Figure 14. RMS Integrated Phase Jitter Random (900 kHz to 20 MHz) vs Frequency^[9]

Notes:

- 8. All plots are measured with 15 pF load at room temperature, unless otherwise stated.
- 9. Phase noise plots are measured with Agilent E5052B signal source analyzer. Integration range is up to 5 MHz for carrier frequencies below 40 MHz.

Rev. 1.6 Page 5 of 15

Rise/Fall Time (20% to 80%) vs C_{LOAD} Tables

Table 7. Vdd = 1.8V Rise/Fall Times for Specific C_{LOAD}

Rise/Fall Time Typ (ns)					
Drive Strength \ C _{LOAD}	5 pF	15 pF	30 pF	45 pF	60 pF
L	6.16	11.61	22.00	31.27	39.91
Α	3.19	6.35	11.00	16.01	21.52
R	2.11	4.31	7.65	10.77	14.47
В	1.65	3.23	5.79	8.18	11.08
T	0.93	1.91	3.32	4.66	6.48
E	0.78	1.66	2.94	4.09	5.74
U	0.70	1.48	2.64	3.68	5.09
F or "-": default	0.65	1.30	2.40	3.35	4.56

Table 9. Vdd = 2.8V Rise/Fall Times for Specific C_{LOAD}

Rise/Fall Time Typ (ns)						
Drive Strength \ C _{LOAD}	5 pF	15 pF	30 pF	45 pF	60 pF	
L	3.77	7.54	12.28	19.57	25.27	
Α	1.94	3.90	7.03	10.24	13.34	
R	1.29	2.57	4.72	7.01	9.06	
В	0.97	2.00	3.54	5.43	6.93	
Т	0.55	1.12	2.08	3.22	4.08	
E or "-": default	0.44	1.00	1.83	2.82	3.67	
U	0.34	0.88	1.64	2.52	3.30	
F	0.29	0.81	1.48	2.29	2.99	

Table 11. Vdd = 3.3V Rise/Fall Times for Specific C_{LOAD}

Rise/Fall Time Typ (ns)						
Drive Strength \ C _{LOAD}	5 pF	15 pF	30 pF	45 pF	60 pF	
L	3.39	6.88	11.63	17.56	23.59	
Α	1.74	3.50	6.38	8.98	12.19	
R	1.16	2.33	4.29	6.04	8.34	
В	0.81	1.82	3.22	4.52	6.33	
T or "-": default	0.46	1.00	1.86	2.60	3.84	
E	0.33	0.87	1.64	2.30	3.35	
U	0.28	0.79	1.46	2.05	2.93	
F	0.25	0.72	1.31	1.83	2.61	

Table 8. Vdd = 2.5V Rise/Fall Times for Specific C_{LOAD}

Rise/Fall Time Typ (ns)						
Drive Strength \ C _{LOAD}	5 pF	15 pF	30 pF	45 pF	60 pF	
L	4.13	8.25	12.82	21.45	27.79	
Α	2.11	4.27	7.64	11.20	14.49	
R	1.45	2.81	5.16	7.65	9.88	
В	1.09	2.20	3.88	5.86	7.57	
T	0.62	1.28	2.27	3.51	4.45	
E or "-": default	0.54	1.00	2.01	3.10	4.01	
U	0.43	0.96	1.81	2.79	3.65	
F	0.34	0.88	1.64	2.54	3.32	

Table 10. Vdd = 3.0V Rise/Fall Times for Specific C_{LOAD}

Rise/Fall Time Typ (ns)						
Drive Strength \ C _{LOAD}	5 pF	15 pF	30 pF	45 pF	60 pF	
L	3.60	7.21	11.97	18.74	24.30	
Α	1.84	3.71	6.72	9.86	12.68	
R	1.22	2.46	4.54	6.76	8.62	
В	0.89	1.92	3.39	5.20	6.64	
T or "-": default	0.51	1.00	1.97	3.07	3.90	
E	0.38	0.92	1.72	2.71	3.51	
U	0.30	0.83	1.55	2.40	3.13	
F	0.27	0.76	1.39	2.16	2.85	

Rev. 1.6 Page 7 of 15

Pin 3 Configuration Options (OE or NC)

Pin 3 of the <u>SiT2024</u> can be factory-programmed to support three modes: Output Enable (OE) or No Connect (NC).

Output Enable (OE) Mode

In the OE mode, applying logic low to the OE pin only disables the output driver and puts it in Hi-Z mode. The core of the device continues to operate normally. Power consumption is reduced due to the inactivity of the output. When the OE pin is pulled High, the output is typically enabled in $<1\mu$ s.

No Connect (NC) Mode

In the NC mode, the device always operates in its normal mode and outputs the specified frequency regardless of the logic level on pin 3.

Table 12 below summarizes the key relevant parameters in the operation of the device in OE or NC mode.

Table 12. OE vs. NC

	OE	NC
Active current 20 MHz (max, 1.8V)	4.5 mA	4.5 mA
OE disable current (max. 1.8V)	3.8 mA	N/A
OE enable time at 110 MHz (max)	130 ns	N/A
Output driver in OE disable	High Z	N/A

Output on Startup and Resume

The SiT2024 comes with gated output. Its clock output is accurate to the rated frequency stability within the first pulse from initial device startup.

In addition, the SiT2024 supports "no runt" pulses and "no glitch" output during startup or when the output driver is re-enabled from the OE disable mode as shown in the waveform captures in Figure 16 and Figure 17.

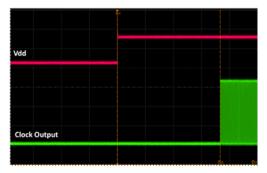


Figure 16. Startup Waveform vs. Vdd

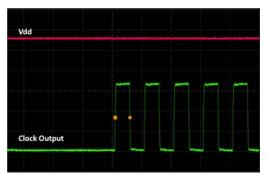
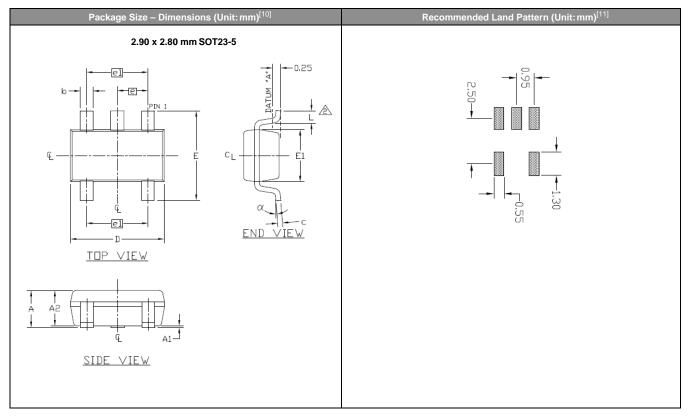



Figure 17. Startup Waveform vs. Vdd (Zoomed-in View of Figure 16)

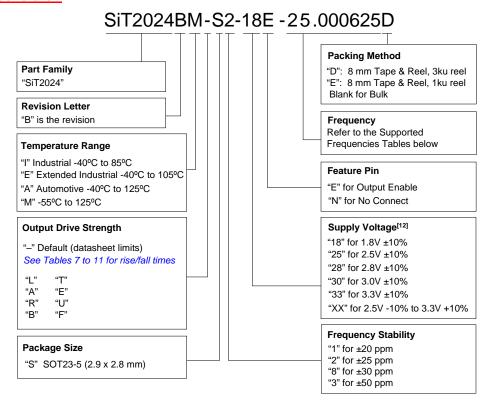
Rev. 1.6 Page 8 of 15

Dimensions and Patterns

Notes:

- 10. Top marking: Y denotes manufacturing origin and XXXX denotes manufacturing lot number. The value of "Y" will depend on the assembly location of the device.
- 11. A capacitor value of 0.1 μF between Vdd and GND is required

Table 13. Dimension Table


Symbol	Min.	Nom.	Max.
Α	0.90	1.27	1.45
A1	0.00	0.07	0.15
A2	0.90	1.20	1.30
b	0.30	0.35	0.50
С	0.14	0.15	0.20
D	2.75	2.90	3.05
E	2.60	2.80	3.00
E1	1.45	1.60	1.75
L	0.30	0.38	0.55
L1	0.25 REF		
е	0.95 BSC.		
e1	1.90 BSC.		
α	0°	_	8°

Rev. 1.6 Page 9 of 15

Ordering Information

The Part No. Guide is for reference only. To customize and build an exact part number, use the SiTime Part Number Generator.

Note:

12. The voltage portion of the SiT2024 part number consists of two characters that denote the specific supply voltage of the device. The SiT2024 supports either 1.8V ±10% or any voltage between 2.25V and 3.62V. In the 1.8V mode, one can simply insert 18 in the part number. In the 2.5V to 3.3V mode, two digits such as 18, 25 or 33 can be used in the part number to reflect the desired voltage. Alternatively, "XX" can be used to indicate the entire operating voltage range from 2.25V to 3.63V.

Table 14. Supported Frequencies (-40°C to +85°C)^[13]

Frequency Range		
Min.	Max.	
1.000000 MHz	110.000000 MHz	

Table 15. Supported Frequencies $(-40^{\circ}\text{C to } +105^{\circ}\text{C or } -40^{\circ}\text{C to } +125^{\circ}\text{C})^{[13, 14]}$

Frequency Range			
Min.	Max.		
1.000000 MHz	61.222999 MHz		
61.974001 MHz	69.795999 MHz		
70.485001 MHz	79.062999 MHz		
79.162001 MHz	81.427999 MHz		
82.232001 MHz	91.833999 MHz		
92.155001 MHz	94.248999 MHz		
94.430001 MHz	94.874999 MHz		
94.994001 MHz	97.713999 MHz		
98.679001 MHz	110.000000 MHz		

Table 16. Supported Frequencies (-55°C to +125°C)^[13, 14]

Frequency Range			
Min.	Max.		
1.000000 MHz	61.222999 MHz		
61.974001 MHz	69.239999 MHz		
70.827001 MHz	78.714999 MHz		
79.561001 MHz	80.159999 MHz		
80.174001 MHz	80.779999 MHz		
82.632001 MHz	91.833999 MHz		
95.474001 MHz	96.191999 MHz		
96.209001 MHz	96.935999 MHz		
99.158001 MHz	110.000000 MHz		

Notes:

- 13. Any frequency within the min and max values in the above table are supported with 6 decimal places of accuracy.
- 14. Please contact SiTime for frequencies that are not listed in the tables above.

Rev. 1.6 Page 10 of 15

Silicon MEMS Outperforms Quartz

Best Reliability

Silicon is inherently more reliable than quartz. Unlike quartz suppliers, SiTime has in-house MEMS and analog CMOS expertise, which allows SiTime to develop the most reliable products. Figure 1 shows a comparison with quartz technology.

Why is EpiSeal™ MEMS Best in Class:

- SiTime's MEMS resonators are vacuum sealed using an advanced EpiSealTM process, which eliminates foreign particles and improves long term aging and reliability
- World-class MEMS and CMOS design expertise

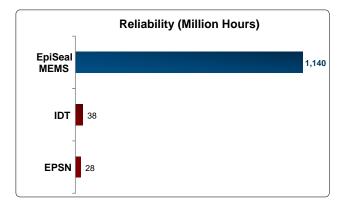


Figure 1. Reliability Comparison[1]

Best Aging

Unlike quartz, MEMS oscillators have excellent long term aging performance which is why every new SiTime product specifies 10-year aging. A comparison is shown in Figure 2.

Why is EpiSeal MEMS Best in Class:

- SiTime's MEMS resonators are vacuum sealed using an advanced EpiSealTM process, which eliminates foreign particles and improves long term aging and reliability
- Inherently better immunity of electrostatically driven MEMS resonator

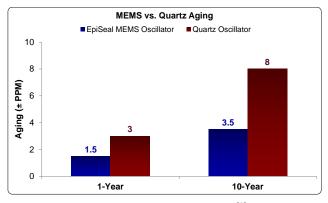


Figure 2. Aging Comparison^[2]

Best Electro Magnetic Susceptibility (EMS)

SiTime's oscillators in plastic packages are up to 54 times more immune to external electromagnetic fields than quartz oscillators as shown in Figure 3.

Why is EpiSeal MEMS Best in Class:

- Internal differential architecture for best common mode noise rejection
- Electrostatically driven MEMS resonator is more immune to EMS

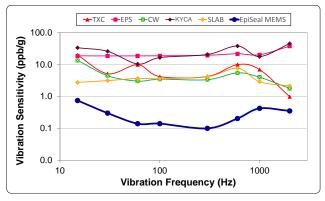


Figure 3. Electro Magnetic Susceptibility (EMS)[3]

Best Power Supply Noise Rejection

SiTime's MEMS oscillators are more resilient against noise on the power supply. A comparison is shown in Figure 4.

Why is EpiSeal MEMS Best in Class:

- On-chip regulators and internal differential architecture for common mode noise rejection
- MEMS resonator is paired with advanced analog CMOS IC

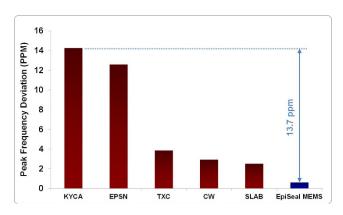


Figure 4. Power Supply Noise Rejection^[4]

Rev. 1.6 Page 13 of 15

Best Vibration Robustness

High-vibration environments are all around us. All electronics, from handheld devices to enterprise servers and storage systems are subject to vibration. Figure 5 shows a comparison of vibration robustness.

Why is EpiSeal MEMS Best in Class:

- The moving mass of SiTime's MEMS resonators is up to 3000 times smaller than quartz
- Center-anchored MEMS resonator is the most robust design

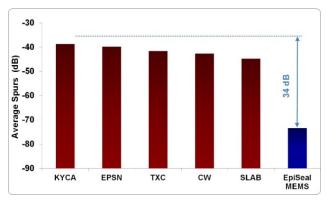


Figure 5. Vibration Robustness^[5]

Figure labels:

- TXC = TXC
- Epson = EPSN
- Connor Winfield = CW
- Kyocera = KYCA
- SiLabs = SLAB
- SiTime = EpiSeal MEMS

Best Shock Robustness

SiTime's oscillators can withstand at least $50,000\ g$ shock. They all maintain their electrical performance in operation during shock events. A comparison with quartz devices is shown in Figure 6.

Why is EpiSeal MEMS Best in Class:

- The moving mass of SiTime's MEMS resonators is up to 3000 times smaller than quartz
- Center-anchored MEMS resonator is the most robust design

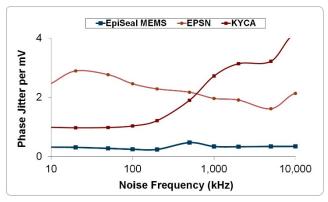


Figure 6. Shock Robustness^[6]

Rev. 1.6 Page 14 of 15

Silicon MEMS Outperforms Quartz

Notes:

- 1. Data source: Reliability documents of named companies.
- 2. Data source: SiTime and quartz oscillator devices datasheets.
- 3. Test conditions for Electro Magnetic Susceptibility (EMS):
 - According to IEC EN61000-4.3 (Electromagnetic compatibility standard)
 - Field strength: 3V/m
 - Radiated signal modulation: AM 1 kHz at 80% depth
 - Carrier frequency scan: 80 MHz 1 GHz in 1% steps
 - Antenna polarization: Vertical
 - DUT position: Center aligned to antenna

Devices used in this test:

Label	Manufacturer	Part Number	Technology
EpiSeal MEMS	SiTime	SiT9120AC-1D2-33E156.250000	MEMS + PLL
EPSN	Epson	EG-2102CA156.2500M-PHPAL3	Quartz, SAW
TXC	TXC	BB-156.250MBE-T	Quartz, 3 rd Overtone
CW	Conner Winfield	P123-156.25M	Quartz, 3 rd Overtone
KYCA	AVX Kyocera	KC7050T156.250P30E00	Quartz, SAW
SLAB	SiLab	590AB-BDG	Quartz, 3 rd Overtone + PLL

4. 50 mV pk-pk Sinusoidal voltage.

Devices used in this test:

Label	Manufacturer	Part Number	Technology
EpiSeal MEMS	SiTime	SiT8208AI-33-33E-25.000000	MEMS + PLL
NDK	NDK	NZ2523SB-25.6M	Quartz
KYCA	AVX Kyocera	KC2016B25M0C1GE00	Quartz
EPSN	Epson	SG-310SCF-25M0-MB3	Quartz

5. Devices used in this test:

same as EMS test stated in Note 3.

- 6. Test conditions for shock test:
 - MIL-STD-883F Method 2002
 - Condition A: half sine wave shock pulse, 500-g, 1ms
 - Continuous frequency measurement in 100 μs gate time for 10 seconds

Devices used in this test:

same as EMS test stated in Note 3.

7. Additional data, including setup and detailed results, is available upon request to qualified customer.

Rev. 1.6 Page 15 of 15