- Chip Type, Ultra Low ESR $105^{\circ} \mathrm{C}, 2000$ hours
- High ripple current capability
- Applications: DC/DC Converter, Switching Power Supply,

Back up Power Supplies for CPU etc.

- RoHS Compliant

Items	Characteristics
Operating Temperature Range (${ }^{\circ} \mathrm{C}$)	$-55 \sim+105$
Voltage Range (V)	$2.5 \sim 10$
Capacitance Range ($\mu \mathrm{F}$) $\left(20^{\circ} \mathrm{C}, 120 \mathrm{~Hz}\right)$	$120 \sim 680$
Capacitance Tolerance ($20^{\circ} \mathrm{C}, 120 \mathrm{~Hz}$)	$\pm 20 \%$
Surge Voltage	$U_{R} \times 1.15$
Leakage Current ($\mu \mathrm{A}$) ※1	Please see the attached ratings list ($20^{\circ} \mathrm{C}, 2 \mathrm{~min}$)
Dissipation Factor ($20^{\circ} \mathrm{C}, 120 \mathrm{~Hz}$)	Please see the attached ratings list
Equivalent Series Resistance $\left(20^{\circ} \mathrm{C}, 100 \mathrm{kHz}\right)$	Please see the attached ratings list
Temperature Characteristics (Max Impedance Ratio at 100 kHz)	$\begin{aligned} & Z_{+105^{\circ} \mathrm{C}} / Z_{+20^{\circ} \mathrm{C}} \leqslant 1.25 \\ & Z_{-55^{\circ} \mathrm{C}} / Z_{+20^{\circ} \mathrm{C}} \leqslant 1.25 \end{aligned}$
Endurance	2000 h , Rated voltage applied at $105^{\circ} \mathrm{C}$ Capacitance change: within $\pm 20 \%$ of the initial measured value Dissipation Factor (Tan δ): $\leqslant 150 \%$ of initial specified value ESR: $\leqslant 150 \%$ of initial specified value DC Leakage Current: \leqslant the initial specified value
Damp heat(Steady state)	1000 h , No-applied voltage $60^{\circ} \mathrm{C}, 90 \sim 95 \% \mathrm{RH}$ Capacitance change: within $\pm 20 \%$ of the initial measured value Dissipation Factor (Tan δ): $\leqslant 150 \%$ of initial specified value ESR: $\leqslant 150 \%$ of initial specified value DC Leakage Current: \leqslant the initial specified value (after voltage processing)
Resistance to soldering heat	Reflow method $\left(260^{\circ} \mathrm{C} \times 5 \mathrm{~s}\right)$ Capacitance change: within $\pm 10 \%$ of the initial measured value Dissipation Factor (Tan δ): $\leqslant 130 \%$ of initial specified value ESR: $\leqslant 130 \%$ of initial specified value DC Leakage Current: \leqslant the initial specified value (after voltage processing)

※1 In case of some problems for measured values, measure after applying rated voltage for 120 minutes at $105^{\circ} \mathrm{C}$.

Dimensions
mm

(unit:mm)								
Size Code	$\Phi D \pm 0.5$	L	$\mathrm{~A} \pm 0.2$	$\mathrm{~B} \pm 0.2$	$\mathrm{C} \pm 0.2$	W	$\mathrm{P} \pm 0.2$	
F 60	6.3	5.7	6.6	6.6	7.3	$0.5 \sim 0.8$	2.0	
B70	8	6.7	8.3	8.3	9.0	$0.5 \sim 0.8$	3.1	

Size list

Cap. $\mu \mathrm{F})$	$\mathrm{U}_{\mathrm{R}}[\mathrm{[S.V]}$ (V)	2.5 $[2.9]$	4 $[4.6]$	6.3 $[7.2]$
120				10 $[12]$
220			F60	B70
270				B70
330		F60	B70	B70
390	F60	F80	B70	
470		B70	B70	
560	B70	B70		
680				

Ratings for HVX Series

$\begin{gathered} U_{R} \\ \text { Code } \end{gathered}$	Rated Capacitance $20^{\circ} \mathrm{C}, 120 \mathrm{~Hz}$	$\begin{gathered} \text { Max ESR } \\ 20^{\circ} \mathrm{C}, 100 \mathrm{kHz} \end{gathered}$	Rated Ripple Current $105^{\circ} \mathrm{C}, 100 \mathrm{kHz}$	Dissipation Factor $20^{\circ} \mathrm{C}, 120 \mathrm{~Hz}$	Leakage Current $20^{\circ} \mathrm{C}$ ， 2 min	$\begin{gathered} \text { Size } \\ \text { ¢D xL } \end{gathered}$	P／N
（V）	（ $\mu \mathrm{F}$ ）	（ $\mathrm{m} \Omega$ ）	（mArms）	（\％）	（ $\mu \mathrm{A}$ ）	（mm）	－
$\begin{aligned} & 2.5 \\ & 0 E \end{aligned}$	390	11	3900	12	195	6.3×5.7	PCVOEVX391MF60ロロ
	560	11	4500	12	280	8×6.7	PCV0EVX561MB70ロロ
	680	11	4500	12	340	8×6.7	PCVOEVX681MB70ロロ
$\begin{gathered} 4 \\ 0 \mathrm{G} \end{gathered}$	330	11	3900	12	264	6.3×5.7	PCVOGVX331MF60ロロ
	390	11	3900	12	312	6.3×7.7	PCV0GVX391MF80ロロ
	470	11	4500	12	376	8×6.7	PCVOGVX471MB70ロロ
	560	11	4500	12	448	8×6.7	PCVOGVX561MB70ロロ
$\begin{aligned} & 6.3 \\ & 0 \mathrm{~J} \end{aligned}$	220	11	3900	12	277	6.3×5.7	PCVOJVX221MF60ロロ
	330	11	4500	12	415.8	8×6.7	PCVOJVX331MB70ロロ
	390	11	4500	12	491.4	8×6.7	PCVOJVX391MB70ロロ
	470	11	4500	12	592.2	8×6.7	PCVOJVX471MB70ロロ
$\begin{aligned} & 10 \\ & 1 \mathrm{~A} \end{aligned}$	120	15	3200	12	240	6.3×5.7	PCVIAVX121MF60ロロ
	220	15	3800	12	440	8×6.7	PCV1AVX221MB70ロロ
	270	15	3800	12	540	8×6.7	PCV1AVX271MB70ロロ
	330	15	3800	12	660	8×6.7	PCV1AVX331MB70ロロ

Customer products are available on request．

Frequency coefficient for ripple current

Frequency	$120 \mathrm{~Hz} \leqslant \mathrm{f}<1 \mathrm{kHz}$	$1 \mathrm{kHz} \leqslant \mathrm{f}<10 \mathrm{kHz}$	$10 \mathrm{kHz} \leqslant \mathrm{f}<100 \mathrm{kHz}$	$100 \mathrm{kHz} \leqslant \mathrm{f}<500 \mathrm{kHz}$
Coefficient	0.05	0.3	0.7	1

