- Chip Type, Standard $105^{\circ} \mathrm{C}, 2000$ hours
- Low ESR, high ripple current capability
- Applications: DC/DC Converter, Switching Power Supply, Back up Power Supplies for CPU etc.
- RoHS Compliant

Items	Characteristics
Operating Temperature Range (${ }^{\circ} \mathrm{C}$)	$-55 \sim+105$
Voltage Range (V)	$2.5 \sim 25$
Capacitance Range ($\mu \mathrm{F}$) $\left(20^{\circ} \mathrm{C}, 120 \mathrm{~Hz}\right)$	10~1500
Capacitance Tolerance ($20^{\circ} \mathrm{C}, 120 \mathrm{~Hz}$)	$\pm 20 \%$
Surge Voltage	$U_{R} \times 1.15$
Leakage Current ($\mu \mathrm{A}$) $\ldots 1$	Please see the attached ratings list ($20^{\circ} \mathrm{C}, 2 \mathrm{~min}$)
Dissipation Factor ($20^{\circ} \mathrm{C}, 120 \mathrm{~Hz}$)	Please see the attached ratings list
Equivalent Series Resistance $\left(20^{\circ} \mathrm{C}, 100 \mathrm{kHz}\right)$	Please see the attached ratings list
Temperature Characteristics (Max Impedance Ratio at 100kHz)	$\begin{gathered} Z_{+105^{\circ} \mathrm{C}} / Z_{+20^{\circ} \mathrm{C}} \leqslant 1.25 \\ Z_{-55^{\circ} \mathrm{C}} / Z_{+20^{\circ} \mathrm{C}} \leqslant 1.25 \end{gathered}$
Endurance	2000 h , Rated voltage applied at $105^{\circ} \mathrm{C}$ Capacitance change: within $\pm 20 \%$ of the initial measured value Dissipation Factor (Tan δ): $\leqslant 150 \%$ of initial specified value ESR: $\leqslant 150 \%$ of initial specified value DC Leakage Current: \leqslant the initial specified value
Damp heat(Steady state)	1000h, No-applied voltage $60^{\circ} \mathrm{C}, 90 \sim 95 \% \mathrm{RH}$ Capacitance change: within $\pm 20 \%$ of the initial measured value Dissipation Factor (Tan δ): $\leqslant 150 \%$ of initial specified value ESR: $\leqslant 150 \%$ of initial specified value DC Leakage Current: \leqslant the initial specified value (after voltage processing)
Resistance to soldering heat	Reflow method $\left(260^{\circ} \mathrm{C} \times 5 \mathrm{~s}\right)$ Capacitance change: within $\pm 10 \%$ of the initial measured value Dissipation Factor (Tan δ): $\leqslant 130 \%$ of initial specified value ESR: $\leqslant 130 \%$ of initial specified value DC Leakage Current: \leqslant the initial specified value (after voltage processing)

$※ 1 \mathrm{In}$ case of some problems for measured values, measure after applying rated voltage for 120 minutes at $105^{\circ} \mathrm{C}$.

Dimensions

(unit:mm)								
Size Code	$\Phi D \pm 0.5$	L	$\mathrm{~A} \pm 0.2$	$\mathrm{~B} \pm 0.2$	$\mathrm{C} \pm 0.2$	W	$\mathrm{P} \pm 0.2$	
F 60	6.3	5.7	6.6	6.6	7.3	$0.5 \sim 0.8$	2.0	
B 70	8	6.7	8.3	8.3	9.0	$0.5 \sim 0.8$	3.1	
B 12	8	12.2	8.3	8.3	9.0	$0.7 \sim 1.1$	3.1	
C 12	10	12.2	10.3	10.3	11.0	$0.7 \sim 1.1$	4.6	

Size list

$\begin{array}{rr} U_{R}[S . V] \\ \operatorname{Cap} .(\mu \mathrm{F}) & (\mathrm{V}) \end{array}$	$\begin{gathered} 2.5 \\ {[2.9]} \end{gathered}$	$\begin{gathered} 4 \\ {[4.6]} \end{gathered}$	$\begin{gathered} 6.3 \\ {[7.2]} \end{gathered}$	$\begin{gathered} 10 \\ {[12]} \end{gathered}$	$\begin{gathered} 16 \\ {[18]} \end{gathered}$	$\begin{gathered} 20 \\ {[23]} \end{gathered}$	$\begin{gathered} 25 \\ {[29]} \end{gathered}$
10							F60.B70
22						F60	B70
27						F60	
33					F60	B70	B12
39					F60	B70	
47				F60	F60	B70	B12
56				F60	B70		C12
68			F60	F60			
82			F60		B70		
100		F60	F60		B12	B12	
120			F60	B70			
150		F60	B70	B70	C12	$\mathrm{Cl2}$	
180			B70		B12		
220	F60	B70	B70		B12.C12		
270		B70		B12			
330		B70		B12	C12		
390			B12				
470	B70		B12	C12			
560	B70	B12	B12	C12			
680	B12		C12				
820		C12	C12				
1000			C12				
1200		C12					
1500	C12						

Ratings for HVC Series

$\begin{gathered} U_{R} \\ \text { Code } \end{gathered}$	Rated Capacitance $20^{\circ} \mathrm{C}, 120 \mathrm{~Hz}$	Max ESR $20^{\circ} \mathrm{C}, 100 \mathrm{kHz}$	Rated Ripple Current $105^{\circ} \mathrm{C}, 100 \mathrm{kHz}$	Dissipation Factor $20^{\circ} \mathrm{C}, 120 \mathrm{~Hz}$	Leakage Current $20^{\circ} \mathrm{C}, 2$ min	$\begin{gathered} \text { Size } \\ \phi D \times L \end{gathered}$	P／N
（V）	（ $\mu \mathrm{F}$ ）	（m）	（mArms）	（\％）	$(\mu \mathrm{A})$	（mm）	－
$\begin{aligned} & 2.5 \\ & 0 E \end{aligned}$	220	20	2800	12	110.0	6.3×5.7	PCVOEVC221MF60ロロ
	470	20	3300	12	235.0	8×6.7	PCVOEVC471MB70ロロ
	560	20	3300	12	280.0	8×6.7	PCVOEVC561MB70ロロ
	680	12	4770	12	340.0	8×12.2	PCVOEVC681MB12口■
	1500	10	5500	12	750.0	10×12.2	PCVOEVC152MC12口口
$\begin{gathered} 4 \\ \text { OG } \end{gathered}$	100	22	2600	12	80.0	6.3×5.7	PCV0GVC101MF60ロロ
	150	22	2800	12	120.0	6.3×5.7	PCVOGVC151MF60口］
	220	21	3220	12	176.0	8×6.7	PCVOGVC221MB70ロロ
	270	21	3220	12	216.0	8×6.7	PCV0GVC271MB70ロロ
	330	21	3400	12	264.0	8×6.7	PCV0GVC331MB70ロロ
	560	12	4770	12	448.0	8×12.2	PCV0GVC561MB12口ロ
	820	10	5500	12	656.0	10×12.2	PCV0GVC821MCl2口■
	1200	10	5500	12	960.0	10×12.2	PCVOGVCl22MCl2口口
$\begin{aligned} & 6.3 \\ & 0 . \end{aligned}$	68	27	2400	12	85.7	6.3×5.7	PCVOJVC680MF60ロロ
	82	23	2600	12	103.3	6.3×5.7	PCVOJVC820MF60口口
	100	23	2800	12	126.0	6.3×5.7	PCVOJVC101MF60ロロ
	120	17	3000	12	151.2	6.3×5.7	PCVOJVC121MF60ロロ
	150	22	3200	12	189.0	8×6.7	PCVOJVC151MB70ロ口
	180	22	3200	12	226.8	8×6.7	PCVOJVC181MB70ロロ
	220	22	3400	12	277.2	8×6.7	PCVOJVC221MB70ロロ
	390	12	4770	12	491.4	8×12.2	PCVOJVC391MB12ロロ
	470	12	4770	12	592.2	8×12.2	PCVOJVC471MB12ロロ
	560	12	4770	12	705.6	8×12.2	PCVOJVC561MB12口ロ
	680	10	5500	12	642.6	10×12.2	PCVOJVC681MCl2口ロ
	820	10	5500	12	774.9	10×12.2	PCVOJVC821MC12口■
	1000	10	5500	12	945.0	10×12.2	PCVOJVC102MC12口口
$\begin{aligned} & 10 \\ & 1 \mathrm{~A} \end{aligned}$	47	26	2600	12	94.0	6.3×5.7	PCVIAVC470MF60ロロ
	56	25	2500	12	112.0	6.3×5.7	PCVIAVC560MF60口口
	68	30	2200	12	136.0	6.3×5.7	PCVIAVC680MF60ロロ
	120	23	3000	12	240.0	8×6.7	PCV1AVC121MB70ロロ
	150	23	3200	12	300.0	8×6.7	PCVIAVC151MB70口口
	270	13	4500	12	540.0	8×12.2	PCV1AVC271MB12п口
	330	14	4420	12	660.0	8×12.2	PCVIAVC331MB12口口
	470	12	5300	12	705.0	10×12.2	PCVIAVC471MC12ロロ
	560	12	5300	12	840.0	10×12.2	PCVIAVC561MC12ロロ
$\begin{aligned} & 16 \\ & 10 \end{aligned}$	33	31	2400	12	105.6	6.3×5.7	PCV1CVC330MF60ロロ
	39	24	2500	12	124.8	6.3×5.7	PCVICVC390MF60ロロ
	47	24	2500	12	150.4	6.3×5.7	PCVICVC470MF60口口
	56	30	2900	12	179.2	8×6.7	PCV1CVC560MB70ロロ
	82	28	3200	12	262.4	8×6.7	PCVICVC820MB70ロロ
	100	25	3000	12	320.0	8×12.2	PCV1CVCl01MB12ロロ
	180	16	4400	12	576.0	8×12.2	PCVICVC181MB12口ロ
	220	16	4400	12	704.0	8×12.2	PCVICVC221MB12ロロ
	150	20	4320	12	480.0	10×12.2	PCVICVCl51MC12ロロ
	220	14	5050	12	528.0	10×12.2	PCVICVC221MC12ם口
	330	14	5050	12	792.0	10×12.2	PCVICVC331MC12ロロ
$\begin{aligned} & 20 \\ & 1 \mathrm{D} \end{aligned}$	22	35	2040	12	88.0	6.3×5.7	PCV1DVC220MF60ロロ
	27	35	2040	12	108.0	6.3×5.7	PCV1DVC270MF60ロロ
	33	45	2000	12	132.0	8×6.7	PCVIDVC330MB70ロロ
	39	45	2000	12	156.0	8×6.7	PCVIDVC390MB70ロロ
	47	33	2630	12	188.0	8×6.7	PCVIDVC470MB70ロロ
	100	22	3320	12	400.0	8×12.2	PCVIDVC101MB12ロロ
	150	20	4320	12	600.0	10×12.2	PCVIDVC151MC12ロロ
$\begin{aligned} & 25 \\ & 1 E \end{aligned}$	10	65	1500	12	50.0	6.3×5.7	PCV1EVC100MF60口口
	10	60	1600	12	50.0	8×6.7	PCVIEVC100MB70ロロ
	22	50	1800	12	110.0	8×6.7	PCV1EVC220MB70口口
	33	30	3000	12	412.5	8×12.2	PCV1EVC330MB12ロロ
	47	30	3000	12	587.5	8×12.2	PCV1EVC470MB12ロロ
	56	28	3800	12	700.0	10×12.2	PCV1EVC560MC12口口

Frequency coefficient for ripple current

Frequency	$120 \mathrm{~Hz} \leqslant \mathrm{f}<1 \mathrm{kHz}$	$1 \mathrm{kHz} \leqslant \mathrm{f}<10 \mathrm{kHz}$	$10 \mathrm{kHz} \leqslant \mathrm{f}<100 \mathrm{kHz}$	$100 \mathrm{kHz} \leqslant \mathrm{f}<500 \mathrm{kHz}$
Coefficient	0.05	0.3	0.7	1

