×
提示信息:
确认
欢迎来到红宝电子!
0531-8228 6666
全面解析关于电解电容的构造及特征
作者:山东红宝电子 来源:www.jnhongbao.com 日期:2023-10-27 16:07 浏览

  电解电容是通过电解质作用在电极上形成的氧化层作为绝缘层的电容,通常具有较大的容量。电解质是液体、胶冻状富含离子的物质。大多数电解电容都是有极性的,也就是在工作时,电容的正极的电压需要始终比负极电压高。

  Electrolytic capacitors are capacitors that use an oxide layer formed by the action of an electrolyte on the electrode as an insulation layer and typically have a large capacity. Electrolytes are liquid, gel like substances rich in ions. Most electrolytic capacitors have polarity, which means that during operation, the positive voltage of the capacitor needs to always be higher than the negative voltage.

  电解电容广泛用于家用电器和各种电子产品中,容量范围大,一般为1〜33000μF,额定工作电压范围为6.3〜700V。它的缺点是介电损耗,大容量误差,最大允许偏差为+100%,-20%。电解电容的耐高温性差,并且由于长时间存放而容易发生故障。

  Electrolytic capacitors are widely used in household appliances and various electronic products, with a large capacity range, generally ranging from 1 to 33000 μ F. The rated working voltage range is 6.3-700V. Its disadvantages are dielectric loss, large capacity error, and maximum allowable deviation of+100%, -20%. Electrolytic capacitors have poor high-temperature resistance and are prone to malfunctions due to long-term storage.

三和电解电容.jpg


  电解电容的金属箔是正极(铝或钽),并且正极紧密附着于金属氧化物膜(铝氧化物或五氧化钽),是电介质。阴极由导电材料,电解质,可以是液体或固体和其他材料组成。由于电解质是阴极的主要部分,因此以电解电容器命名。同时,正极和负极电解电容器不能错误地连接。

  The metal foil of an electrolytic capacitor is the positive electrode (aluminum or tantalum), and the positive electrode is tightly attached to a metal oxide film (aluminum oxide or tantalum pentoxide), which is a dielectric. The cathode is composed of conductive materials, electrolytes, which can be liquids or solids, and other materials. As the electrolyte is the main part of the cathode, it is named after an electrolytic capacitor. At the same time, the positive and negative electrolytic capacitors cannot be connected incorrectly.

  当电容器施加的电压超过其耐压时,或者当极化电解电容器的电压极性反转时,电容器的泄漏电流将急剧上升,从而导致电容器的内部热量增加,并且电解质将产生大量的气体。为了防止电容器爆炸,在电容器壳体的顶部上压了三个凹槽,以便电容器的顶部可以在高压下首先破裂并释放内部压力。

  When the voltage applied by the capacitor exceeds its withstand voltage, or when the polarity of the polarized electrolytic capacitor voltage is reversed, the leakage current of the capacitor will sharply increase, leading to an increase in internal heat of the capacitor and the electrolyte will produce a large amount of gas. In order to prevent the capacitor from exploding, three grooves were pressed on the top of the capacitor shell, so that the top of the capacitor can first rupture and release internal pressure under high voltage.

  电解质在加热时会膨胀,并且在膨胀到一定程度时会打开电容器的外壳并泄漏出去。这通常称为泄漏。当温度缓慢升高时,电解电容器中的电解质会缓慢泄漏;但是当温度上升非常快时,电解电容器的内部会迅速膨胀,这会立即拉伸电解电容器的外壳,甚至破坏整个外壳,这就是爆炸。

  Electrolytes will expand during heating, and when they expand to a certain extent, they will open the shell of the capacitor and leak out. This is commonly referred to as a leak. When the temperature slowly increases, the electrolyte in the electrolytic capacitor will slowly leak; But when the temperature rises very quickly, the interior of the electrolytic capacitor will rapidly expand, which will immediately stretch the outer shell of the electrolytic capacitor and even damage the entire shell, which is an explosion.

  极化电解电容器通常在电源电路或中频和低频电路中发挥作用,以进行电源滤波,去耦,信号耦合,时间常数设置和直流阻塞。通常不能在交流电源电路中使用。当用作直流电源电路中的滤波电容器时,其阳极(正)应连接到电源电压的正端子,阴极(负)应连接到电源电压的负端子,不可反向。 ,否则会损坏电容器。

  Polarized electrolytic capacitors typically play a role in power circuits or medium and low frequency circuits for power filtering, decoupling, signal coupling, time constant setting, and DC blocking. Usually cannot be used in AC power circuits. When used as a filter capacitor in a DC power circuit, its anode (positive) should be connected to the positive terminal of the power supply voltage, and the cathode (negative) should be connected to the negative terminal of the power supply voltage, and cannot be reversed, Otherwise, it will damage the capacitor.

  电解电容器温度升高的原因是其自身的功耗异常增加,并超过了其可以承受的功耗。功耗增加的原因可能是:电解电容器过电压;纹波电流大;反极性。

  The reason for the temperature increase of electrolytic capacitors is that their own power consumption has abnormally increased, exceeding the power consumption they can withstand. The reason for the increase in power consumption may be: overvoltage of electrolytic capacitors; High ripple current; Reverse polarity.

  但是,在某些电容器的制造过程中,顶部的凹槽不合格,电容器内部的压力会导致电容器底部的密封橡胶弹出。此时,电容器内部的压力突然释放,并且会发生爆炸。一旦容量较大的电解电容器爆炸,其电源可能会危及人身安全。因此,不仅应该从性能的角度来设计大容量的电解电容器,而且还应该从安全性的角度来设计大容量的电解电容器。

  However, in the manufacturing process of some capacitors, the top groove is not qualified, and the pressure inside the capacitor can cause the sealing rubber at the bottom of the capacitor to pop out. At this point, the pressure inside the capacitor suddenly releases and an explosion occurs. Once a large capacity electrolytic capacitor explodes, its power supply may endanger personal safety. Therefore, not only should large capacity electrolytic capacitors be designed from a performance perspective, but also from a safety perspective. 

×
预约上门
请拨打销售热线 0531-8228 6666,或让我们联系您!
联系人:
*
电话:
*
留言内容: